ENSEIRB-MATMECA

Méthode des éléments finis pour le calcul de structures

Présentation

Code interne: EMM8-MSOL4

Description

L'analyse des structures repose sur des formulations des problèmes de mécanique des solides favorables au traitement numérique. Elle a vu le jour en même temps que la méthode des éléments finis dont elle est pratiquement indissociable.

L'objectif du cours est de former les étudiants aux méthodes du calcul des structures : développement de modèles structuraux, discrétisation des modèles, calcul des vecteurs et matrices élémentaires, procédures de résolution. La présentation qui est faite de ces concepts et méthodes est mécanique.

Heures d'enseignement

CM	Cours Magistraux	16h
TD	Travaux Dirigés	4h
TI	Travaux Individuels	
TDM	Travaux Dirigés sur Machine	18h

Syllabus

- I - Notions générales : Forces nodales élémentaires et équilibre d'un élément. Déplacements nodaux élémentaires et compatibilité de la déformation. Comportement du matériau. Matrice de rigidité élémentaire, rang, signification physique. Changement de repère. - II - Méthode des déplacements : Matrice de localisation élémentaire. Ecriture matricielle de l'équilibre des noeuds. Matrice de rigidité globale de la structure. Signification physique des termes. Technique d'assemblage des vecteurs et matrices élémentaires. - III - Théorie des poutres - IV - Matrices de rigidité élémentaires de modèles 2D de poutre : Introduction : forces nodales et déplacements nodaux en flexion, défaut de la méthode utilisée pour l'élément barre. Modèle de Bernoulli. Modèle avec cisaillement. Utilisation des éléments à 4 ddl. Modèle Bernoulli + traction. Charges en travée. - V - Formes intégrales en analyse des structures : Rappel des équations de la mécanique3D, Application de la technique générale des résidus pondérés pour établir les principes des travaux virtuels. - VI - Résolution de problèmes continus par méthode de Gallerkin - VII - Préliminaires mathématiques a la M.E.F. Interpolation Nodale (Lagrange et Hermite). Interpolation de la géométrie (changement de variable d'intégration en 1D et 2D (calcul

ENSEIRB-MATMECA

de J, detJ et J-1) et changement d'opérateur de dérivation). Intégration Numérique. Convergence de la M.E.F. - VIII - M.E.F. en calcul de structures. - IX - Construction d'éléments filaires - X - Construction d'éléments pour problèmes plans

Informations complémentaires

Parcours Matériaux et Structures

Modalités de contrôle des connaissances

Évaluation initiale / Session principale - Épreuves

Type d'évaluation	Nature de l'épreuve	Durée (en minutes)	Nombre d'épreuves	Coefficient de l'épreuve	Note éliminatoire de l'épreuve	Remarques
Contrôle	Contrôle			1		
Continu	Continu					
Intégral						

Infos pratiques

Contacts

Anita Montemurro

Manita.Catapano@bordeaux-inp.fr

