ENSEIRB-MATMECA

Simulation numérique du contrôle non destructif de matériaux par ultrasons

Présentation

Code interne: EMM9-PHYS1

Description

Introduction à la simulation numérique pour l'optimisation du contrôle non destructif de matériaux. Pratique sur logiciel CIVA (CEA http://www.extende.com/fr/) puis sur Comsol Multiphysics (https://www.comsol.fr) pour simuler la génération, la propagation et la détection des ondes ultrasonores, ainsi que leur interaction avec des défauts de matériaux. Applications à l'inspection de structures par techniques ultrasonores.

Introduction to numerical simulation for the optimization of non-destructive testing of materials. Practice on CIVA software (CEA - http://www.extende.com/fr/) and then on Comsol Multiphysics (https://www.comsol.fr) to simulate the generation, propagation and detection of ultrasonic waves, as well as their interaction with defects in materials. Applications to ultrasound-based inspection techniques.

Heures d'enseignement

CM	Cours Magistraux	24h
TI	Travaux Individuels	24h

Pré-requis obligatoires

Elasticité dynamique, matériaux, notions de propagation d'ondes (fréquence, longueur d'onde, vitesse, atténuation, faisceau...) ou de vibrations (fréquence, modes propres)

Syllabus

Simulation du CND par Ultrasons avec CIVA # Contexte industriel, problématique et besoin de CND

ENSEIRB-MATMECA

- # Nécessité de la simulation numérique
- # Notions générales en propagation d'ondes ultrasonores
- # Différentes approches en modélisation (numériques, analytiques, semi-analytiques)
- # Exemples d'applications
- # Présentation générale et utilisation du logiciel CIVA
- # Séance de Travaux Pratiques avec logiciel CIVA : calcul de champ, simulation d'inspection, détection et localisation de défauts avec prise en compte de géométries et matériaux complexes, techniques multiéléments.

Simulation du CND par Ultrasons avec Comsol Multphysiques

- # Introduction Généralités
- # Le modèle mathématique relatif à la propagation d'ondes ultrasonores dans un matériau anisotrope
- # Module PDE (Partial Differential Equation) ou module Structural Mechanics
- # Définir une géométrie, un maillage, les paramètres du modèle, les conditions aux limites, ...
- # Excitation et réception d'un champ de déformation mécanique en régime dynamique
- # Diffraction d'une onde par un défaut de matériau
- # Analyse des données simulées
- # Cas pratiques: ondes de volume, ondes guidées, détection et localisation d'un défaut dans un matériau composite.

Informations complémentaires

Contrôle des matériaux - Ultrasons - Logiciels de simulation numérique

Modalités de contrôle des connaissances

Évaluation initiale / Session principale - Épreuves

Type d'évaluation	Nature de l'épreuve	Durée (en minutes)	Nombre d'épreuves	Coefficient de l'épreuve	Note éliminatoire de l'épreuve	Remarques
Contrôle	Contrôle			1		
Continu Intégral	Continu					

Infos pratiques

Contacts

Michel Castaings

■ Michel.Castaings@bordeaux-inp.fr

ENSEIRB-MATMECA

