School / Prep
ENSEIRB-MATMECA
ECTS
1.5 credits
Internal code
EE8TS231
Description
This course focuses on deep learning approaches.
Teaching hours
- CIIntegrated courses5,33h
- TDMMachine Tutorial8h
- TIIndividual work4h
Syllabus
Introduction to supervised learning
Parametric approaches
Neural networks
"Perceptron" multilayer
Neural network parameter learning
Cost functions
Neural network parameter optimization by gradient backpropagation
Stochastic gradient descent
Parameter initialization parameters
Learning step definition
Learning step evolution
"Momentum"
ADAM
Premature termination
Neural network architecture
Convolution layer convolution
BatchNorm
Residual connection
ResNet
Neural network specialization
Data augmentation
"Adversarial examples"
Introduction to PyTorch
Application example : object detection
Assessment of knowledge
Initial assessment / Main session - Tests
Type of assessment | Type of test | Duration (in minutes) | Number of tests | Test coefficient | Eliminatory mark in the test | Remarks |
---|---|---|---|---|---|---|
Integral Continuous Control | Continuous control | 1 |