School / Prep
ENSEIRB-MATMECA
Internal code
EE6MA108
Description
This course is a continuation of S5.
Introduction to additional mathematical tools useful to the electronics engineer.
Chap 1 Bessel functions.
Chap 2 Functional spaces.
Chap 3 Functions of the complex variable
Chap 4 Introduction to distribution theory
Teaching hours
- CIIntegrated courses3h
- CMLectures12h
- TDTutorial17h
- TIIndividual work10h
Mandatory prerequisites
Mathematics module - I of the first semester
Syllabus
Chap 1 Bessel functions.
Solving differential equations by integer series
Case of the 1st kind Bessel equation. Properties.
Applications (FM modulation, tubular OEM guide, circular conductor skin effect, etc.)
Chap 2 Functional spaces.
Euclidean spaces of functions
Hermitian spaces of functions
Orthogonal bases in L2(a,b) spaces
Applications (Orthogonal polynomials, Chebyshev's in particular, filter approximation function, etc.). )
Chap 3 Functions of the complex variable
Analyticity property.
Algebraic and transcendental functions.
Laurent series.
Integration in the complex plane. Residue theorem.
Z-transform, definition and properties.
Applications.
Chap 4Introduction to distribution theory
Regular and singular distributions (Dirac, comb, Pf 1/x), definitions and properties.
Fourier transform in the sense of distributions.
Applications, including Poisson relation, Hilbert transform, frequency causality criterion.
Bibliography
- Polycops de cours et de TD
- Mathématique du signal par H. Reinhardt (Dunod)
- Walter Appel Mathématique pour la physique et les physiciens, HetK Editions, Paris
- Auliac Guy, Avignant Jean, Azoulay Elie Techniques mathématiques pour la physique, Ellipses
Assessment of knowledge
Initial assessment / Main session - Tests
Type of assessment | Type of test | Duration (in minutes) | Number of tests | Test coefficient | Eliminatory mark in the test | Remarks |
---|---|---|---|---|---|---|
Final inspection | Written | 120 | 1 | without document without calculator |