School / Prep
ENSEIRB-MATMECA
Internal code
EI8IF230
Description
Securing and sizing networks (urban, IT, telecoms, etc.), optimizing the routing of flows (financial, information, personnel, products), logistics and transport problems (road, air and rail) represent real challenges for industry. The underlying optimization problems most often boil down to combinatorial models, which are essential building blocks for understanding complex systems.
This course is designed to complement training in algorithmic approaches specific to combinatorial optimization problems in graphs. The course aims to explain how to use the tools of mathematical programming (typically integer and linear programming) to guide combinatorial algorithms towards optimal solutions or, when this proves too complex, good approximate solutions. The aim is to master the basic models and techniques used in strategies for solving a wide variety of complex problems.
Teaching hours
- CIIntegrated courses26h
- TIIndividual work25h
Mandatory prerequisites
Introduction to OR
Syllabus
# Flow optimization in networks: basic models and algorithms
# Polyhedra and combinatorics: primal-dual algorithms and linear programming-based approximation algorithms
Assessment of knowledge
Initial assessment / Main session
| Type of assessment | Nature of assessment | Duration (in minutes) | Number of tests | Evaluation coefficient | Eliminatory evaluation mark | Remarks |
|---|---|---|---|---|---|---|
| Integral Continuous Control | Continuous control | 1 |
